Elliptic Equations with Limiting Sobolev Exponents

نویسنده

  • HAIM BREZIS
چکیده

where a ( x ) is a given function on M . The original interest in such questions grew out of Yamabe's problem (see [40], [39], [2], [27], [15]) which corresponds to the special case where a ( x ) = ( ( N 2)/4(N l ) ) R ( x ) and R ( x ) is the scalar curvature of M . It turns out that, despite its simple form, equation (1) (or ( 2 ) ) has a very rich structure and provides an amazing source of open problems and new ideas. The main reason is that (1) (or (2)) can be expressed as a variational problem in the Sobolev space Hi(SZ) (or H ' ( M ) ) ; however it lucks compactness-in other words, the PalaisSmale condition (PS) fails-because the exponent p = ( N + 2)/(N 2) is critical and the Sobolev imbedding H' C L2N/(N-2) is not compact. The first contribution to problem (1) is a negative result due to Pohozaev. Consider the special case of (1) where a ( x ) = 0, i.e.,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Positive Solutions for Degenerate Elliptic Equations with Critical Cone Sobolev Exponents on Singular Manifolds

In this article, we show the existence of multiple positive solutions to a class of degenerate elliptic equations involving critical cone Sobolev exponent and sign-changing weight function on singular manifolds with the help of category theory and the Nehari manifold method.

متن کامل

Energy Estimates for a Class of Semilinear Elliptic Equations on Half Euclidean Balls

For a class of semi-linear elliptic equations with critical Sobolev exponents and boundary conditions, we prove point-wise estimates for blowup solutions and energy estimates. A special case of this class of equations is a locally defined prescribing scalar curvature and mean curvature type equation.

متن کامل

Quasilinear Schrödinger equations involving critical exponents in $mathbb{textbf{R}}^2$

‎We study the existence of soliton solutions for a class of‎ ‎quasilinear elliptic equation in $mathbb{textbf{R}}^2$ with critical exponential growth‎. ‎This model has been proposed in the self-channeling of a‎ ‎high-power ultra short laser in matter‎.

متن کامل

On elliptic problems involving critical Hardy-Sobolev exponents and sign-changing function

In this paper, we deal with the existence and nonexistence of nonnegative nontrivial weak solutions for a class of degenerate quasilinear elliptic problems with weights and nonlinearity involving the critical Hardy-Sobolev exponent and a sign-changing function. Some existence results are obtained by splitting the Nerahi manifold and by exploring some properties of the best Hardy-Sobolev constan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006